Closed-loop laser power control system for Cladding and Laser Metal Deposition processes

Continuous monitoring and measurement of the melt pool geometry

ENSURES QUALITY AND REPEATIBILITY

COMPATIBLE WITH MOST OF LASER HEADS AND POWDERS

EASY MECHANICAL INTEGRATION

QUICK CONFIGURATION

System operation

Continuous melt pool measurement
- Accurate closed-loop control of the laser power
- Alarm indicator

Configuration S/W friendly user interface
- Easy process setup
- Advanced configuration
- Circular & rectangular ROIs

Process compatibility
- LMD, cladding
- Continuous, single tracks
- Manual (constant power), automatic control & melt pool size monitoring

S/W Indicators
- Melt pool width
- Laser power
- Infrared image
- Laser status

Mechanical integration

- On-axis optical system monitoring melt pool geometry
- Laser head optical path needs IR transmission (>1.1 um)
- Compact system – Embedded IR camera, processor and control
- Integration in the laser head using an existing optical port

System components and dimensions

Infrared camera with processing electronics: 88 x 60 x 92

Connection box: 124.5 x 102 x 28
All dimensions in mm

- Water block with inlet / outlet connectors
- Multi I/O connector
- GigE connector
- C-mount thread
- Lens with locking counterthread
- Multi I/O connector
- Water block with inlet / outlet connectors

NEW INFRARED TECHNOLOGIES

CLAMIR Laser power control system for Cladding and LMD processes www.clamir.com
Operation of CLAMIR with LMD processes

Continuous control of the laser

- Avoids overheating of the part under process and allows a continuous and high quality manufacturing process

Use of CLAMIR

- Reduces rates of defective parts, material reduction cost up to 60% and saves 50% more energy than uncontrolled processes

Laser power is closed-loop controlled in REAL-TIME using the infrared image of the melt pool

- Constant laser power causes overheating and lack of adherence to the base material

Operation of CLAMIR with Cladding processes

Reduces damage to the base material due to excess of laser power application (average reduction of dilution: >40%)

- Allows continuous processing of large cladding lengths
Specifications

| **Components** | Infrared camera with real-time processing electronics and waterblock
Connection box, multi I/O cable (3 m), power supply (24 VDC)
Software package for system configuration, datalogging and log files analysis
Infrared emitter for optical calibration |
| **Process compatibility** | LMD process (Laser Metal Deposition)
Cladding |
Optical compatibility	Transmission of infrared signal (above 1.1 um) from the process area to the optical port is required*
Material compatibility	Steel powder, Stainless steel powder, Stellite powder, Inconel, others
Laser power control	Analog signal output for laser power control, 0 VDC - 10 VDC
Dimensions (mm)	Infrared camera: 88 mm x 60 mm x 92 mm
Connection box: 124.5 mm x 102 mm x 28 mm	
Weight	0.5 kg
Power supply	24 VDC, 6 W
Power supply included	
Imaging lens	CaF2, f=50mm with manual focus mechanism
(other focal lengths available)	
Mechanical enclosure (camera)	IP67 rated mechanical enclosure with embedded heatsink
Embedded waterblock for air /water cooling	
Mechanical interface to laser optics	C-mount thread with counterthread for tight adjustment
Field of view	Dependent on the optical system installed in the laser head and diameter of the nozzle
Infrared camera	VPD PbSe camera, 64x64 pixels (pixel size: 50 microns)
MWIR response (1 -5 um), frame rate 1000 images per second	
Communication interface	Gigabit Ethernet (RJ-45)
Software	CLAMIR Acquisition and Configuration SW v.2.0
NIT Visualization SW v.2.1	
Minimum requirements	PC with processor i5, RAM memory: 8 GB
Hard disk available: 1 GB, 0.5.: Windows 10 or later (32/64 bits)	
Process control	Selectable modes: Automatic, Manual
Process configuration	Selectable process configuration: Tracks, Continuous
Initial laser power, track length (Tracks mode)	
Laser ON delay & autodetection	
Feedback control parameters	
Indicators	Melt pool width, Laser power, Infrared image, Laser status
Other features	Laser ON/OFF digital input (optocoupled)
Monitoring alarm digital output (optocoupled)
Process data logging, Circular & rectangular Region-Of-Interest (ROI) |

The performance of the system may be limited if additional optical components are installed in the optical path.